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Abstract

Several pipe network flow analysis programs were recovered from a
well-known engineering reference (Jeppson, 1976). The source code was
manually extracted from the published text, transcription errors were cor-
rected, and the overall code reformatted to compile as Fortran 90. Some
of the programs relied on proprietary Sperry-Rand (UNIVAC) libraries and
extensions to FORTRAN 66, leading to the development of compatibility
libraries to avoid substantially rewriting the software. Verification test cases
for each program were developed based on examples in the text. A number
of significant errors in the published text were documented and corrected
as part of the recovery and verification process. A consistent build envi-
ronment for the software was created using both the make and CMake tools,
allowing the code to be built with multiple compilers in multiple environ-
ments. The build and test process for the software was extensively docu-
mented and the code was put under version control and posted publicly at
https://bitbucket.org/apthorpe/jeppson_pipeflow.

Keywords: Source code recovery, proprietary library removal, verification,
build automation, UNIVAC, piping network analysis, water distribution
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1 Executive Summary

1.1 Background
In January of 2018, a user on Stack Overflow posted a question about a missing
UNIVAC math library used by a historical pipe network flow analysis code de-
scribed in (Jeppson, 1974); see https://stackoverflow.com/questions/48265245/
univac-math-pack-subroutines-in-old-school-fortran-pre-77. The text
of (Jeppson, 1974) appears to be almost identical to that of (Jeppson, 1976), and
after reviewing both texts, a total of 6 programs were found, each between 1 and
3 pages in length. Given the significance of the Jeppson text in instruction and as
an engineering reference1, we decided to attempt to recover the original code.

1.2 Recovery and Revitalization Plan
Three phases of software recovery and revitalization were planned. Phase 1 is
the recovery phase (section 2) in which minimal changes are made to allow the
code to compile and correctly run test cases. Basic build automation is created
to ensure the build process is defined and repeatable and all software artifacts
(source code, documentation, build configuration, etc.) is placed under revision
control for safekeeping.

Phase 2 is the modernization phase, the goal of which is to convert as much of
the FORTRAN 66 code format and idiom to well-formed Fortran 2008 (section 3).
The goal is to clarify the logic of the code by replacing low-expressivity constructs
with clearer modern alternatives and remove problematic and obsolete features
which reduce long-term maintainability.

Phase 3 is the modularization phase where the applications are analyzed to find
repetitive or common code elements and extract them to subroutines and functions
and organize them into modules (section 2). This achieves the goal of code reuse
and improves code quality by allowing unit testing, or testing individual code
elements in isolation. This is contrasted with integral testing where code function-
ality is tested as part of the whole program. Both unit and integral testing have
desirable attributes and detect different types of errors. There are historical and
architectural reasons why unit testing is relatively difficult in Fortran, especially

1As of March 2018, Google Scholar shows at least 330 citations to (Jeppson, 1976);
see https://scholar.google.com/scholar?cites=15501786215094582199&as_sdt=5,44&
sciodt=0,44&hl=en

https://stackoverflow.com/questions/48265245/univac-math-pack-subroutines-in-old-school-fortran-pre-77
https://stackoverflow.com/questions/48265245/univac-math-pack-subroutines-in-old-school-fortran-pre-77
https://scholar.google.com/scholar?cites=15501786215094582199&as_sdt=5,44&sciodt=0,44&hl=en
https://scholar.google.com/scholar?cites=15501786215094582199&as_sdt=5,44&sciodt=0,44&hl=en
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when applied to existing (vs new ‘greenfield’ code); phase 3 illustrates how unit
testing can be applied to older code as part of a comprehensive revitalization plan.

In all phases, it is expected the code documentation, test, and build infrastruc-
ture will be improved as a side effect of achieving the goals specified in each phase.
In some phases, specific goals are set for upgrading documentation, test, and build
infrastructure; in general, improvements to these elements are expected to occur
in support of other activities and may not be explicitly specified as goals.

The description of the three code modification phases is broken down into four
elements:

• Initial Goals,

• Process,

• Reconnaissance, and

• Products and deliverables

Initial goals describes the intent of the modification phase given the knowl-
edge at the beginning of the evolution. Initial goals may not be complete or achiev-
able, but they represent a point-in-time intent and plan which will necessarily be
modified by emergent conditions that arise during the evolution.

Process explains the intended actions and techniques which will be used to im-
plement the initial goals. Some actions involve research or information gathering,
others are specific modifications to the software or other development activities
such as test generation or infrastructure creation.

Reconnaissance details the knowledge gained during review, analysis, and ma-
nipulation of the code. Information gained by investigating the code may change
the project goals, create new goals in the current or later modification phases, de-
fer current goals to later phases, or delete goals entirely. While reconnaissance
implies information gathered prior to taking action on the code, this section fo-
cuses on interesting and significant knowledge gained about the code during the
entire modification phase.

Products and deliverables lists the tangible artifacts which result from the code
modification effort. These include source code, build, test, and documentation in-
frastructure, and utility scripts, coding, and data generated during the modification
phase.

This structure is intended to show how the goals of a software modification
plan are changed by information learned during the project. Often project post
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mortem reviews will omit false starts, missing information, and changes to plans,
giving the impression that a project was planned perfectly and implemented com-
pletely. This presents a false sense of certainty and describes a software devel-
opment process that deviates substantially from actual practice. If such reviews
are to have any value as institutional knowledge and as teaching tools, they must
describe work-as-practiced, not work-as-imagined. This is especially important
in safety-critical work since the difference between work-as-practiced and work-
as-imagined makes work planning and management much more difficult when
balancing operational, financial, and safety goals. At best, this only leads to un-
realistic assumptions about schedule and budget; at worst it can lead to workers
inadvertently being set up to fail, resulting in poor code quality or project failure,
potentially with disastrous consequences. The safety significance of deviations
between work-as-imagined and work-as-practiced is discussed at length in (Holl-
nagel, 2014).

Finally, key insights gained from this project are summarized in section 5.

1.3 Refactoring
Note that the code modifications described in phases 1 through 3 do not add any
new functionality or change the input file format or user interface of the software.
This process is known as refactoring and it is a critical part of revitalizing and clar-
ifying software to improve its long-term maintainability(Fowler and Beck, 1999).
Here our intent is limited to recovery and internal modernization rather than ex-
tending or changing the functionality of the software. The recovery and revitaliza-
tion process set the stage for functional changes to the software by reconstituting
the build and test infrastructure, clarifying code logic and removing problematic
constructs to let developers focus on feature addition instead of working around
brittle code constructs or unnecessary complexity to ensure code stability is main-
tained during development.

2 Phase 1: Recovery

2.1 Initial Goals
The recovery project had several goals:

• recover each program presented in the text such that it could be compiled in
a modern environment with a commonly available Fortran compiler which
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supported Fortran 95 or later (e.g. gfortran or Intel’s ifort),

• provide test cases so the code could be verified as operating correctly,

• replace or rewrite proprietary libraries without substantially rewriting the
application code,

• provide build infrastructure to simplify building the code in a variety of
environments

• configure auto-documentation tools such as Doxygen so the internal struc-
ture of the code may be easily reviewed,

• place the code under configuration control to safeguard it during recovery
(i.e. allow changes to be reverted during recovery to prevent wasted effort
and to document the recovery process)

• document the build and test process to assist others in understanding and
using the software

These were considered the baseline goals for the first phase of the project from
which specific tasks and products would be derived. Later phases of the project

2.2 Process
The plan for recovering each program involved copying and reformatting raw text
into legal ASCII text2 format source code files, iterative removal of syntax errors,
generation of test input, and iterative removal of runtime and input errors.

Since (Jeppson, 1974) was in electronic format and contained searchable text,
the scanned source code text was copied from the PDF file into text files and
compared against the typeset source code in (Jeppson, 1976). This allowed for
disambiguation of characters such as 1 (one), l (lower-case ’L’), I (upper-case
’I’), and / (forward slash or stroke) and 0 (zero) and O (upper-case ’O’). These
characters pose a specific problem for optical character recognition (OCR) sys-
tems, especially when typeset in a proportional font not designed specifically for
OCR processing.

2The FORTRAN language dates to 1956 and predates the ASCII character standard by approx-
imately a decade; ASCII was defined in 1966.
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Once obvious typographical errors had been removed from the code, it would
be formatted as fixed-format Fortran (i.e. FORTRAN 77 style) and compiled,
editing until all syntax errors had been removed.

After successful compilation, the source code would be minimally transformed
from fixed to free format, replacing comment and continuation characters, adding
missing structural element (program and end program elements), converting Hol-
lerith strings3, and ensuring line labels 4 were uniquely associated with either a
format or continue statement. This was done to clarify logic and conform with
modern Fortran development practice.

Test cases would then be created, with code input either taken directly from the
original text or derived from the supplied examples. Input was carefully compared
against the read format specified in the code to ensure the input could be read
properly.

The code would be run against the test cases and the results would be com-
pared against those reported in the text. While results were not expected to match
digit-for-digit, three significant figures of accuracy was deemed sufficient in most
cases for verifying the code.

The process described is an idealization and it was known that other emergent
tasks would be required to complete the recovery of each program. Proprietary
coding structures would need to be identified and removed or replaced. Missing
dependencies such as library routines would need to be replaced as well. Since the
code would be repeatedly compiled to remove syntax errors, build scripts would
be required.

To test the code, compiler options would need to be set based on code behavior.
Legacy code may take advantage of proprietary compiler features or non-standard
defaults, and some features of modern Fortran compilers must be adjusted (e.g.
floating point exception handling). A subtle aspect of code recovery is predicting
and discovering the implied assumptions about the legacy computing environment.
Often the original build environment has been lost and assumptions about local
variable persistence, automatic initialization, etc. may not be valid in the new
build environment.

3‘Hollerith’-formatted text is prefixed by the length of the text and the letter ‘H’. For example,
the text string ’cat’ is written 3Hcat as a Hollerith string.

4Used to denote goto and end= target statements as well as do loop boundaries
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2.3 Reconnaissance
The code in Chapter 5 of the Jeppson texts (“Linear Theory Method”) was inves-
tigated first since it was relatively long and complex (see Figures 1 through 7).
This code presented a number of challenges. While full text of the source code
was available in the PDF version of (Jeppson, 1974), the OCR process had dif-
ficulty recognizing some of the text; even under magnification, parts of the PDF
were still illegible (Figure 8). Luckily the print version of (Jeppson, 1976) was
legible and was generally sufficient to clarify any ambiguities stemming from the
illegibility of (Jeppson, 1974).

Figure 1: Original source code for linear method solver (1 of 7)
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Figure 2: Original source code for linear method solver (2 of 7)
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Figure 3: Original source code for linear method solver (3 of 7)
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Figure 4: Original source code for linear method solver (4 of 7)
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Figure 5: Original source code for linear method solver (5 of 7)
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Figure 6: Original source code for linear method solver (6 of 7)

Figure 7: Original source code for linear method solver (7 of 7)
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Figure 8: Legibility problems in linear method solver; PDF source document
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Other problems were not related to the scanning process. One issue known
from the outset of the project was that some of Jeppson’s software relied on pro-
prietary UNIVAC math libraries. Figure 9 shows a call to GJR(), a multipurpose
matrix manipulation and solver routine from the Sperry Rand MATH-PACK li-
brary (Sperry Rand Corporation, 1970a), (Sperry Rand Corporation, 1970b). This
is the subject of the original Stack Overflow post which led to this code recovery
project.

Figure 9: Call to missing proprietary (UNIVAC) library in linear method solver

A related issue is the use of alternate return points, the ability of a subroutine
to continue execution at a specified labeled line upon return, rather than contin-
uing execution at the statement immediately following the subroutine call. This
was often used for error handling, where one or more return points corresponding
to error handling or diagnostic routines would be provided to a subroutine in case
of specific errors. This could easily be accomplished with a return error code and
error handling logic following the subroutine call, but the convenience, reduced
code size, and marginal increase in speed occasionally made this rarely-used fea-
ture attractive. Alternate return points were never popular (thankfully) but one
appears here as the $98 term in the call to GJR(). This is confirmed by inspecting
the code; the line labeled 98 begins a code block which writes an error message
and sends control to the beginning of the code to read input for another analysis.

Other problems result from the source code being retyped for publication
rather than being reproduced directly from machine-readable source code. Sev-
eral typographical errors were found which could be attributed to the transcrip-
tion process (Figures 10 and 11). In some cases the error was easy to detect and
correct; 10 shows the variable JB mis-typed as BJ. In others, such as the missing
closing (right) parenthesis in the line beginning with Q= in Figure 11, the resulting
code was ambiguous and required further analysis and testing to determining the
intent of the code in order to correct. This example is from corrective flow solver
given in the latter half of Chapter 6, named JEPPSON_CH6B in the recovered code
distribution.

The first approach to resolving the ambiguity was to compare the source code
published in both (Jeppson, 1974) and (Jeppson, 1976) to determine if the error
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Figure 10: Typographical error in variable JB in linear method solver

Figure 11: Ambiguity in corrective flow Newton-Raphson solver source code
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had been corrected in the later text. Unfortunately, the source code in both doc-
uments appears to be identical; errors found in one text have been confirmed to
occur in both.

The second approach was to apply subject-matter-expert knowledge (fluid me-
chanics, piping system analysis, computational modeling) and source code anal-
ysis to determine the intent of the code and suggest corrections. The assumption
was that adding a single closing parenthesis would resolve the error. Examining
the code, the corrected line has four legal permutations:

1. Q = ABS(FLOAT(LLP(IK))/IL) * QI(IL) + DQ(II)

2. Q = ABS(FLOAT(LLP(IK)/IL)) * QI(IL) + DQ(II)

3. Q = ABS(FLOAT(LLP(IK)/IL) * QI(IL)) + DQ(II)

4. Q = ABS(FLOAT(LLP(IK)/IL) * QI(IL) + DQ(II))

Reviewing the code input and source code, the variables QI (the initial flow)
is always positive and DQ (the corrective flow) may be positive or negative. IL is
always positive since it is the absolute value of LLP, the signed pipe index indicat-
ing the presence of pump IK. Thus QI(IL) is the magnitude of flow through pipe
IL and the sign of LLP(IK) gives the direction of the flow from a pump in pipe
IL (positive for clockwise in the flow loop, negative for counter-clockwise). By in-
spection we can eliminate interpretations 1 and 2 since both ABS(FLOAT(LLP(IK))/IL)
and ABS(FLOAT(LLP(IK)/IL)) will always evaluate to +1.0.

As an aside, the construct FLOAT(I/ABS(I)) is equivalent to sign(1.0, real(I)),
however the sign() intrinsic function is part of the FORTRAN 77 standard and
was unlikely to be available in Sperry Rand’s ‘FORTRAN 5’ which was based on
the FORTRAN 66 standard. In later refactoring, it may be advisable to replace
FLOAT(I/ABS(I)) with sign(1.0, real(I)); even though they are functionally
identical and the former is shorter, the intent of the latter is is slightly clearer - to
extract the sign of the argument. It is possible that both constructs will be con-
verted to identical assembly code by the compiler5 so the sign() intrinsic should
be used to make the intent of the code more obvious.

The next line HP = (A(IK) * Q + B(IK)) * Q + HO(IK) is the pressure-flow
relationship through a pump, colloquially known as a ‘pump curve’; see Figure 12.
By convention in these relations, Q is always positive; backflow through the pump

5This can be confirmed with a disassembler or a tool such as objdump. The -S flag to gfortran
will create assembly language files for the target processor.
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is not permitted. This implies that the corrective DQ flow cannot be greater than the
pump flow QI; physically this would correspond to ‘deadheading’ the pump which
would result in zero flow6. This eliminates interpretation 3, thus permutation 4
should be used as the corrected source code line. This can be tested on sample
cases; test the code using both permutation 3 and 4 to determine which yields
correct results. While it is best to understand the subject matter and modeling
techniques when trying to derive the intent of ambiguous code, experimentation
is often a cheap and easy method of confirming or refuting one’s assumptions.
Both theory and experiment are powerful tools in source code reconstruction and
recovery.

Figure 12: Example pump curve

Note that this explanation is somewhat of a post hoc rationalization; experi-
mentation with permutations 3 and 4 was conducted initially and only later was
the theoretical basis for selecting permutation 4 derived after becoming more fa-
miliar with the code and subject matter. However it was clear that permutations

6This is a simple instructional code; a more comprehensive piping network analysis code
should account for both deadheading (zero flow when pump discharge pressure is lower than
the downstream pressure) and runout (maximum flow).
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1 and 2 were equivalent and of no effect very early in the analysis. The salient
point is that the combined use of subject matter expertise and experimentation is
powerful in scientific source code reconstruction, regardless of the order in which
they are applied.

2.4 Products and Deliverables
2.4.1 Organization

Six programs were identified from the review of the Jeppson texts. Application
names were not given in the source documents so the applications were named
based on their location in the source text. The application names and roles are:

• JEPPSON_CH2 calculates the Darcy-Weisbach friction factor and head loss as
described on pages 20 of (Jeppson, 1974) and pages 39 of (Jeppson, 1976).

• JEPPSON_CH4 is an incompressible flow pipe network solver as described
on page 34 of (Jeppson, 1974) and pages 64-65 of (Jeppson, 1976).

• JEPPSON_CH5 is a piping network flow solver based on the linear method
solver code described on pages 41-42 of (Jeppson, 1974) and pages 75-58
of (Jeppson, 1976).

• JEPPSON_CH6A is a Newton-Raphson method piping network flow solver
based on the Newton-Raphson solver code described on pages 63 of (Jepp-
son, 1974) and pages 119-121 of (Jeppson, 1976).

• JEPPSON_CH6B is a piping network flow solver based on the corrective flow
Newton-Raphson solver code described on pages 66-67 of (Jeppson, 1974)
and pages 126-128 of (Jeppson, 1976).

• JEPPSON_CH7 solves pipe flow networks using the Hardy Cross method as
described on page 75 of (Jeppson, 1974) and pages 148-150 of (Jeppson,
1976).

A single Jeppson code recovery project directory was created and each pro-
gram was given its own directory under the root project directory. Within each pro-
gram project directory, the src directory contained source code and build scripts,
the test directory contained input for each test case, the test/ref directory con-
tained reference input and output for each test case, and the userdoc directory
contained any additional files needed to create Doxygen documentation of each
program.
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2.4.2 Documentation

The root project directory and each of the program project files contained the
following documentation files:

1. BUILD.md, build and test instructions for the project or specific program

2. LICENSE.md, the software license (MIT ‘expat’)

3. README.md, an description of the project or program

4. TODO.md, a list of refactoring and enhancement tasks

All documentation files are plain text, formatted as Markdown; see https:
//daringfireball.net/projects/markdown/syntax

2.4.3 Build Scripts

The root project directory, program project directories, and program source di-
rectories each contain a file named CMakeLists.txt which configure how the
CMake cross-platform build automation system builds each program; see https:
//cmake.org/ for a description and use of CMake. Table 1 gives an example
CMake build script used for building JEPPSON_CH5.

Additionally, GNU Makefiles are provided in each program project directory,
allowing manual compilation of each program. An example of the Makefile cre-
ated for the JEPPSON_CH5 program is shown in Table 2.

https://daringfireball.net/projects/markdown/syntax
https://daringfireball.net/projects/markdown/syntax
https://cmake.org/
https://cmake.org/
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Table 1: Example CMakeLists.txt for JEPPSON_CH5

1 # States that CMake required version must be greater than 2.8.7
2 cmake_minimum_required(VERSION 2.8.7)
3 enable_language (Fortran)
4 project(JEPPSON_CH5 Fortran)
5
6 find_package(LAPACK)
7
8 # make sure that the default is a DEBUG
9 if (NOT CMAKE_BUILD_TYPE)

10 set (CMAKE_BUILD_TYPE DEBUG CACHE STRING
11 "Choose the type of build, options are: None Debug Release."
12 FORCE)
13 endif (NOT CMAKE_BUILD_TYPE)
14
15 # FFLAGS depend on the compiler
16 get_filename_component (Fortran_COMPILER_NAME ${CMAKE_Fortran_COMPILER} NAME)
17
18 if (Fortran_COMPILER_NAME MATCHES "gfortran.*")
19 # gfortran
20 set (CMAKE_Fortran_FLAGS_RELEASE "-ffpe-trap=invalid,zero,overflow \
21 -fbacktrace -fno-automatic -finit-local-zero -O3 -g")
22 set (CMAKE_Fortran_FLAGS_DEBUG "-ffpe-trap=invalid,zero,overflow \
23 -fbacktrace -fno-automatic -finit-local-zero -fbounds-check -Wall -pedantic \
24 -Og -pg -g")
25 elseif (Fortran_COMPILER_NAME MATCHES "ifort.*")
26 # ifort
27 set (CMAKE_Fortran_FLAGS_RELEASE "-O3 -save -zero")
28 set (CMAKE_Fortran_FLAGS_DEBUG "-O0 -save -zero -pg")
29 elseif (Fortran_COMPILER_NAME MATCHES "g77")
30 # g77
31 set (CMAKE_Fortran_FLAGS_RELEASE "-funroll-all-loops -fno-f2c -O3 -m32")
32 set (CMAKE_Fortran_FLAGS_DEBUG "-fno-f2c -O0 -g -m32")
33 else (Fortran_COMPILER_NAME MATCHES "gfortran.*")
34 message ("CMAKE_Fortran_COMPILER full path: " ${CMAKE_Fortran_COMPILER})
35 message ("Fortran compiler: " ${Fortran_COMPILER_NAME})
36 message ("No optimized Fortran compiler flags are known, we just try -O2...")
37 set (CMAKE_Fortran_FLAGS_RELEASE "-ffpe-trap=invalid,zero,overflow \
38 -fbacktrace -fno-automatic -finit-local-zero -O3 -g")
39 set (CMAKE_Fortran_FLAGS_DEBUG "-ffpe-trap=invalid,zero,overflow \
40 -fbacktrace -fno-automatic -finit-local-zero -fbounds-check -Wall -pedantic \
41 -Og -pg -g")
42 endif (Fortran_COMPILER_NAME MATCHES "gfortran.*")
43
44 file(GLOB SRC_FILES *.f90)
45
46 add_executable(JEPPSON_CH5 ${SRC_FILES})
47 target_link_libraries(JEPPSON_CH5 ${LAPACK_LIBRARIES} ${EXTRA_LIBS})
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Table 2: Example Makefile for JEPPSON_CH5

1 objects = alfc_sperry_mathpack.o JEPPSON_CH5.o
2
3 # Set compiler and compiler options
4 FC = gfortran
5 # Debug - gfortran
6 FFLAGS = -Wall -pedantic -Og -g -fbounds-check -pg -finit-local-zero \
7 -fno-automatic -fbacktrace -ffpe-trap=invalid,zero,overflow
8 # Release - gfortran
9 # FFLAGS = -Wall -O3 -g -finit-local-zero -fno-automatic -fbacktrace \

10 # -ffpe-trap=invalid,zero,overflow
11 #
12 # FC = ifort
13 # Debug - ifort
14 # FFLAGS = -warn all -O0 -g -check bounds -pg -zero -save -traceback \
15 # -fpe0
16 # Release - ifort
17 # FFLAGS = -warn all -O3 -g -zero -save -traceback -fpe0
18
19 # Set link options
20 LDFLAGS = -L/usr/lib/lapack
21 LIBS = -llapack
22
23 # Compile
24 %.o : %.f90
25 $(FC) ${FFLAGS} -c $<
26
27 # Link
28 JEPPSON_CH5 : $(objects)
29 $(FC) -o JEPPSON_CH5 $(objects) $(LDFLAGS) $(LIBS)
30
31 # Clean
32 clean :
33 /bin/rm -f JEPPSON_CH5 *.o *.mod
34
35 # __END__
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2.4.4 Test Cases

Since the code was provided as part of an instructional text, each code has at
least one verification test associated with it, typically in the form of a derivation
or example manual calculation (‘hand calc’) in the text just preceding the source
code. Figure 13 shows the diagram and initial conditions for the first test case
for the JEPPSON_CH5 program; Figure 14 and Table 3 show the published and
reconstructed text input for the code.

Note that in Figure 13, no length or diameter is given for pipes (2), (4), or
(6). Figure 14 give the dimensions as 751 feet of 12-inch pipe for (2), 500 feet of
12-inch pipe for (4), and 600 feet of 6-inch pipe for (6); diameters in inches are
given on line 2 of the input and lengths in feet are given on line 3 of the input. The
length given in the input is an effective length; flow obstructions such as the globe
valves on pipes (1) and (5) and the orifice meter on pipe (2) add a ‘virtual length’
to the pipe which allows both frictional and ‘form’ losses from obstructions to
be treated as purely frictional losses. The equivalent length (∆L) for each flow
obstruction loss factor (KL) is shown in Figure 15.

The loss factor KL for the orifice meter on pipe (2) is given as 1.5 in Figure 13
but is 1.2 in Figure 15. If the test input file is assumed to be correct, the test case
diagram should be revised as in Figure 16. However, if the calculation is assumed
to supersede the diagram, the 51 foot ’virtual length’ added to pipe (2) would give
a real pipe length of 751 − 51 = 700 feet. As confirmation, the actual length
of pipe (1) is given as 800 feet which should be equal to 1106 − 306 = 800 feet.
Similarly, the given actual length plus virtual length of pipe (5) is 800+400 = 1200
feet which is the value given in the input file shown in Figure 14. If, however, the

diagram is to be believed, the effective length of pipe (2) should be 700+
1.5(1)
0.0238

=

763 feet.
This inconsistency should not have a great effect on the results but it does

illustrate that a number of errors appear in the text, errors that occur in both Jepp-
son’s paper (Jeppson, 1974) and his (presumably edited) book (Jeppson, 1976). It
is important then to check both the source code for errors introduced in publica-
tion as well as sample input. In some cases, example calculations are incorrect
making these examples worse than useless for code verification. Substantial effort
may be wasted attempting to find errors in the code when the errors are in the
original manual calculations. An important insight is to understand the sample
calculations and confirm their results are correct before using the sample cases as
verification tests for the code.
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Figure 13: Linear method pipe network test case 1 diagram as published
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Figure 14: Linear method pipe network test case 1 input as published

Table 3: Linear method pipe network test case 1 input as reconstructed

1 7 6 2 10 0 0.001 0.00001217 0.1
2 8.0 12.0 10.0 12.0 10.0 6.0 8.0
3 1106.0 801.0 1000.0 500.0 1200.0 600.0 800.0
4 0.0102 0.0102 0.0102 0.0102 0.0102 0.0102 0.0102
5 1 2 1 4
6 2000.0
7 0 3 -1 -2 5
8 1 3 2 -3 -7
9 -1500.0

10 1 2 3 -4
11 -1000.0
12 1 2 -5 -6
13 -1500.0
14 1 2 6 7
15 2000.0
16 4 1 -2 -3 -4
17 4 5 -6 7 2



WP-20180307-jeppson
Rev. 0

Page 25 of 52
March, 2018

Figure 15: Length equivalent of form loss factors calculated for linear method
pipe network test case 1
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Figure 16: Revised linear method pipe network test case 1 diagram
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2.4.5 MATH-PACK Compatibility Module

As part of this project, a compatibility library was created to simplify recov-
ery of legacy codes which depend on proprietary libraries such as the Sperry
Rand MATH-PACK (Sperry Rand Corporation, 1970a), (Sperry Rand Corpora-
tion, 1970b) and STAT-PACK (Sperry Rand Corporation, 1969), (Sperry Rand
Corporation, 1970c) libraries and those from the Numerical Recipes texts (Press
et al., 1986). The scope of this project only requires compatibility with the MATH-
PACK routines, specifically the Gauss-Jordan matrix solver GJR.

A web search revealed the contents of the MATH-PACK and STAT-PACK li-
braries (Albert and Whitehead, 1986). This reference only provided routine names
and brief descriptions, not the full calling interface (argument list) of the routines.
Documentation of the interface of CGJR was found in (Stodt, 1978) and the source
code for DGJR and CGJR, the double precision and complex versions of the single
precision GJR were found in (Ding and Kennedy, 1982).

The GJR routine performs one or more matrix manipulation functions depend-
ing on the value of the argument V(1): matrix inversion, calculation of determi-
nant, or solving Ax⃗ = b⃗ for x⃗ using the Gauss-Jordan method. The Jeppson codes
only use the latter matrix solution mode of GJR so the immediate focus was on
implementing the GJR interface and finding the appropriate implementation func-
tions in LAPACK.

There are three reasons the source code from (Ding and Kennedy, 1982) was
not used in the development of the compatibility library. The first is that (Ding and
Kennedy, 1982) was not found until a month after the compatibility library was
written. The second is that the intent of providing a compatibility library was to
replace proprietary code with open source cod; the original Sperry code is likely
still under copyright and would not be legal to redistribute without the copyright
holder’s consent. Finally, it was felt that the LAPACK libraries are better tested
than the original MATH-PACK routines.

The GJR compatibility routine consists of a wrapper around the LAPACK rou-
tines SGETRF (LU factorization), SGETRI (inversion of LU factorized matrix), and
SGESV general matrix solution. The V(1) variable is interpreted to determine the
function(s) GJR is expected to perform, the original arguments are copied to allo-
catable arrays compatible with the LAPACK routines, the LAPACK routines are
called, and the results are copied back to the original arrays if no errors occurred.
Otherwise error codes are set consistent with the original behavior of GJR. One
major difference is that the alternate return point functionality of the original GJR
routine is not supported so error handling code is added after the call to GJR to
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replicate the original application behavior.
At present, only integration tests with the Jeppson applications are performed;

there are no unit tests or integration tests for the GJR routine beyond those supplied
for the Jeppson applications. This also implies that the matrix inversion and deter-
minant calculation functions have not been tested since neither function is used by
the Jeppson applications. More comprehensive testing is needed for the compati-
bility libraries however the matrix solver functionality appears to work correctly
in the Jeppson applications. This is better than no testing and is sufficient for the
initial use case of the compatibility library in the recovery phase of this project.

3 Phase 2: Modernization

3.1 Initial Goals
The primary goal of the modernization phase is to convert as much of the FOR-
TRAN 66 code idiom to well-formed Fortran 2008 in order to clarify its logic and
reduce the number and severity of warnings issued by the compiler. Refactorings
include:

• Convert the source code to free-format

• Properly indent the code

• Add Doxygen-compatible documentation to routines and variables

• Replace GOTO logic with modern control structures such as IF-THEN-ELSE
‘DO-WHILE, SELECT-CASE, CYCLE, and EXIT

• Replace DO-CONTINUE with DO-END DO to remove line numbers

• Replace numeric line numbers with text labels

• Replace common numeric literals with named constants (π, e, etc.)

• Declare all variables and disable implicit variable typing and declaration
with ‘IMPLICIT NONE‘

• Convert textual conditional operators to modern intuitive equivalents, e.g.
change .EQ. to ==, .GT. to >, .LE. to <=, .NE. to /=, and so on
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• Convert type-specific intrinsic functions to generic equivalents, e.g. change
IABS to ABS, ALOG10 to LOG10

• Replace simple loops with array operations

• Convert Fortran keywords to lower case

Several references which may prove useful in understanding modern Fortran
constructs and the rationale for these changes include (Metcalf et al., 2011), (Markus,
2012), and (Clerman and Spector, 2011).

3.1.1 Process

Much of this process could be performed mechanically. The findent tool (https:
//sourceforge.net/projects/findent/) rapidly converted the source code from
fixed to free format. Much of the rote work was performed manually in a text
editor but is more reliably performed by a dedicated refactoring tool such as
the Photran plugin for Eclipse (https://www.eclipse.org/photran/) or the
commercial PlusFORT toolkit (http://www.adeptscience.co.uk/products/
fortran-tools/plusfort-with-spag/plusfort-version-6.html)

Untangling FORTRAN 66 style IF-GOTO logic required manual effort as loops
in several applications were found to be open-code equivalents of what should
have been function or subroutine calls. As the intent of the code was derived,
plans were developed to refactor code segments into standalone routines in the
modularization phase of the project described in section 4.

Adding variable declarations was accomplished by adding IMPLICIT NONE to
each application and parsing variable names from the compiler error output. Fol-
lowing Fortran name-type convention, variables whose names began with [I-N]
were declared INTEGER and the remainder were declared REAL. This was accom-
plished with a short shell script using the common UNIX text manipulation tools
grep, sed, and sort. This script would not be sufficient for refactoring a more
complex program but in this instance it was effective in quickly producing declara-
tion statements for the Jeppson applications. This could have been accomplished
just as easily with any scripting language capable of regular expression search and
and robust text manipulation features.

https://sourceforge.net/projects/findent/
https://sourceforge.net/projects/findent/
https://www.eclipse.org/photran/
http://www.adeptscience.co.uk/products/fortran-tools/plusfort-with-spag/plusfort-version-6.html
http://www.adeptscience.co.uk/products/fortran-tools/plusfort-with-spag/plusfort-version-6.html
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Table 4: gfortran error parsing script to generate variable declarations

1 #!/bin/sh
2
3 make 2>&1 \
4 | grep 'Error: Symbol .* has no IMPLICIT type' \
5 | sed 's/^Error: Symbol .\([a-z][a-z0-9_]*\). at (1) has no IMPLICIT type.*/\1/i' \
6 | sort -u \
7 | sed 's/^[a-ho-z].*/ real :: \U&/;s/^[i-n].*/ integer :: \U&/'

3.2 Reconnaissance
The structure of the code is made apparent by the indentation performed by findent
and refactoring is simplified by ensuring line labels are uniquely associated with
only FORMAT and CONTINUE statements (performed during the recovery phase).
This clearly delineated loops for analysis and refactoring. Comparing applica-
tions to each other showed commonalities which could be be marked for later
refactoring or, in the case of common numeric literals, extracted into parameters7.

In several applications, a complex loop was analyzed and found to act as a
pair of independent and identical sequences of operations with differing initial
conditions. Since the goal of this phase of the project was to convert archaic FOR-
TRAN to a modern idiom, refactoring the body of this loop was deferred to the
modularization phase of refactoring as described in section 4. The line between
modernization and modularization is not well defined but it was felt that deferring
this work would avoid expanding the scope of the current refactoring phase. There
is a temptation to fix problems as soon as they are found and it can be difficult to
simply mark a problem as discovered and put off refactoring and resolution until
later. However, separating discovery from resolution allows refactoring work to
be planned and keeps the project scope constrained and manageable. Since this
is a project with no fixed schedule or budget8 it was felt that deferring work illus-
trates the discipline of breaking a software recovery project into distinct phases
to ensure deliverables are produced on regular schedule without losing track of
deferred work. The TODO.md for each application was updated to track refactoring
of the open-loop code.

7In Fortran parlance, parameters are named constants defined at compile time
8This project is a technical demonstration with neither schedule nor budget
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3.3 Products and Deliverables
No new products or deliverables were specified beyond updated source code files
and documentation. The existing project architecture, content, and infrastructure
were expected to be sufficient for this refactoring phase.

4 Phase 3: Modularization

4.1 Initial Goals
The primary goal of this phase of refactoring is identifying and isolating com-
mon sets of operations into program units; code fragments would be converted to
subroutines or functions which would then be grouped as modules by role. Fol-
lowing good software design practice, subroutine and function interfaces would
be clearly documented with the intent of each argument explicitly specified. Intent
refers to whether an argument passed through the routine’s call interface is meant
only to be read, only to be written to, or both read and written to. ‘Read-only’
arguments are marked as intent(in), ‘write-only’ (return) variables are marked
as intent(out), and those arguments which are both read and altered within a
routine are marked as intent(in out). By default, all arguments are considered
intent(in out), consistent with FORTRAN 77 behavior.

The intent system in modern Fortran provides a mechanism for controlling
access to variables and leading to safer code. The Fortran compiler will flag
intent(out) variables which are returned without having a value set and will flag
attempts to change the value of intent(in) variables. This also provides hints to
the compiler as to which routines may be run in parallel in contrast to those which
must run in sequentially when attempting to auto-parallelize code. Further, when
intent is set on all variables to be either in or out (not in out) and a routine has
no side effects such as external I/O or use of intrinsics such as cpu_time or time
and date functions, a routine may be marked as pure or elemental which allows
the routine to safely be called in parallel code or to operate on array data without
explicitly declaring arguments as arrays.

Aside: intent, pure, and elemental provide modern Fortran with limited
design-by-contract support. These features make commitments to the compiler
about how routines will use variables and whether they affect resources outside
of those passed in via the routines’ call interface. In exchange, the compiler is
better able to optimize the executable and offer features such as array operations
on routines which support it. While there may be no need for parallel or vector
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operations at this stage of refactoring, it is good practice to lay the groundwork for
high-performance computing support early in a project, especially if functionality
is being moved into a library.

A secondary ongoing goal of this phase is to clarify the code. Much can be
accomplished simply by documenting variables and sections of code. In some in-
stances it was found that multiple pieces of information were encoded in a single
variable, specifically flow direction and pipe index. When specifying the pipes
connecting to a junction or composing a flow loop, a pipe index is specified by an
unsigned (positive) integer and flow ‘sense’ or direction is indicated by sign. The
sign convention used for junctions is that flows into the junction are considered
positive and flows out of the junction are considered negative. The sign conven-
tion for flow loops is similar: ‘clockwise‘ flows are considered positive in a flow
loop, ‘counter-clockwise‘ flows are considered negative. The sign indicating flow
direction is combined with the unsigned pipe index to simplify user input; this can
be seen in Figure 14 and Table 3. While this encoding simplifies user input, stor-
ing both pieces of information (pipe index and flow direction) as a single encoded
variable requires that the variable be decoded every time it is used.

4.2 Process
4.2.1 Clarify Code Logic

Five main techniques were used to clarify the intent of the code:

• Document variables

• Document significant sections of code

• Replace conditional expressions with meaningful logical variables

• Replace numeric literals with named constants

• Disambiguate encoded variables

The first two techniques required code and documentation analysis to deter-
mine the meaning of each variable and the function of code blocks.

The next technique was used to clarify the termination criteria of iterative cal-
culation loops. An iterative calculation loop terminates if either 1) convergence
criteria are met (e.g. the magnitude of deviation or correction is below a numeri-
cal threshold), or 2) the maximum allowed number of iterations is reached. The
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first condition was stored in the logical variable CONVERGED and the logical-or
of both conditions was stored in the variable DONE. This allowed the code to be
written with much clearer intent; the iterative calculation loop was rewritten as
do while (.not. DONE) and convergence was checked after loop termination
with if (.not. CONVERGED). The distinction between loop termination with and
without convergence is made clear with the addition of only two variables.

Replacing numeric literals with named constants serves two purposes; it im-
parts meaning to what is otherwise an undocumented value and it ensures consis-
tent usage by setting the value in a single point in the code. In large scientific
programs built by multiple developers, it is common to see multiple inconsis-
tent uses of the same constant; π may be variously defined as 3.14, 3.14159,
or 3.14159265. Subtle errors may be introduced if the value is mistyped as
3.14195265. Worse yet is when π4 is written as 0.78539816. In symbolic form,
the meaning is clear; in decimal form, meaning is likely lost. To simplify review
and code maintainability, it is preferable to migrate numeric literals to named con-
stants any time a constant is used more than once or its meaning is not clear from
context.

The final clarification technique is decoding variables which store multiple
pieces of information in a single variable. In this case, encoded pipe index/flow
convention values were decoded as they were read, storing the pipe index as an
unsigned integer and storing the flow direction in a new real variable; +1.0 indi-
cating entering junction flow or clockwise loop flow, and +1.0 indicating exiting
junction flow or counter-clockwise loop flow. This required code changes to make
use of the flow direction variable and to remove decoding of the pipe index. This
required careful checking but the resulting code is much simpler; the detection
and treatment of flow direction is much more apparent and the pipe index variable
can be used directly without needing sign correction.

Should it be desired to use object-oriented techniques in this code suite, the
strong coupling between pipe index and flow direction suggest the creation of a
Pipe object which contains attributes such as length, diameter, roughness, and flow
direction. That is beyond the scope of this refactoring phase but is noted as future
consideration.

4.2.2 Identify Common Elements

This software suite is designed to solve problems in steady-state incompressible
flow of Newtonian fluids with constant properties so the individual programs are
expected to share a number of common elements. Some of the common elements
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will be related to the physical systems being modeled, friction factor correlations
under different flow regimes being a prime example. Other common elements will
include:

• mathematical constants such as π and e,

• physical constants such as unit conversion factors and acceleration due to
gravity,

• geometric relations such as circular area and perimeter as a function of di-
ameter, hydraulic radius, and hydraulic diameter, and

• numerical and mathematical functions such as root finders and matrix solvers.

The programs in the suite are meant as educational examples and as a result,
programs presented early in the text illustrate simple cases which are extended to
create progressively more complex programs. As the code is decomposed into
common elements and the underlying structure of the code is made clear, we
should expect to find common structures of higher levels of abstraction.

Since all the programs follow a common computational model (a linear, proce-
dural read-calculate-report scheme), we should also expect to find common utility
elements such as

• read and write formats

• text processing functions such as scanners, tokenizers, and parsers,

• reporting, logging, and error handling elements

Unlike languages like C or C++9, Fortran has never had a standard library
so the most basic utility functions may be duplicated among the programs in this
suite.

Finally, as common elements are extracted into separate program units, we
will need to verify that newly-created routines are complete and correct. This
implies a common testing framework and potentially other common infrastructure.
Common infrastructure is an emergent property of the overall system; it does not
exist in the code at present but will be generated as part of this refactoring process.

9Or perhaps any language created since 1970.
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4.2.3 Extract Common Elements into Cohesive Program Units

As common elements are identified, they should be extracted into shared program
units and organized in a sensible and cohesive manner. Cohesion as described
in (Moses, 1988) and (Yourdon and Constantine, 1979) is the internal functional
relatedness of program units (i.e. functions and subroutines). From least to most
cohesive, seven levels of relatedness or association are identified:

1. Coincidental association

2. Logical association

3. Temporal association

4. Procedural association

5. Communicational association

6. Sequential association

7. Functional association

Per Yourdon et al., cohesion levels 1-3 are very low cohesion and are discour-
aged. cohesion levels 4-7 are generally considered acceptable, with functional
association being the strongest level of cohesion. Reviewing the forms of cohe-
sion may inform our design decisions when grouping common elements identified
in the previous phase of this analysis.

Coincidental association essentially groups program elements for convenience;
there is no other relatedness among the program elements.

Logical association groups elements which are in the same logical class. For
example, grouping routines which print error messages is a form of logical asso-
ciation.

Temporal association groups elements which occur at the same time in pro-
gram execution, for example grouping routines which occur during the initializa-
tion or shutdown phase of an application would be considered temporal associa-
tion.

Procedural association groups elements because the are used in a given pro-
gram unit. For example, it is common to break a long program unit into a sequence
of shorter elements. If those elements are grouped together only because they are
used by that longer routine, that grouping would be considered procedural associ-
ation.
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Communicational association groups program elements by the data they oper-
ate on; that is, the routines are associated by having the same interface.

Sequential association groups elements when each operates on the output of
an element and provides input to another element in a sequence of operations.
Procedural and sequential association are both related to ‘flowchart thinking’, the
decomposition of a process into a series of sequential steps. The distinction be-
tween the two is whether elements are grouped by the containing program element
or by the sequence of operations.

Moses defines functional association negatively – program elements which are
not related by any of the other six forms of association are considered functionally
cohesive. I would argue that grouping common program elements which (for ex-
ample) calculate friction factors under various flow regimes would be functionally
cohesive. The routines are logically related but they have a clear focus; they will
not be called in all phases of a program’s execution but they aren’t required to
be called in any given phase or order or routine. They may or may not share an
interface.

Note that Moses’ work was published in 1988, shortly before the release of
Fortran 90 which introduced the module, a significant advance in Fortran’s ability
to group program units and data. Moses refers to functional cohesion as resulting
in perfect ‘black box’ functionality. Program elements are note grouped by any of
the other weaker forms of cohesion and there’s implications of low coupling and
data encapsulation. Further, Moses’ discussion of cohesion is meant to address
the grouping of program statements not program units (functions, subroutines)
and there are limits to applying principles of statement cohesion to larger program
elements. But that said, the main point is to let the concept of cohesion inform our
design choices when extracting common code into subroutines and procedures and
secondarily when organizing routines into modules shared among the programs in
this suite of applications.

At this point we can only speculate on the which elements will be found in
common and how they should be grouped. Final determinations will be made
during the upcoming reconnaissance phase but we can identify at least five func-
tionally cohesive groups:

• Compatibility routines for legacy proprietary code

• Numerical routines

• Friction factor routines
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• Physical and numerical constants

• Unit testing routines

Beyond that, only code analysis will determine other functional groupings
which apply to the common elements found.

4.2.4 Extend the Build Infrastructure to Incorporate Common Dependen-
cies

To avoid maintaining multiple identical program units, the build infrastructure
should allow common elements to be compiled a single time and linked to each
of the programs which depend upon them, either as compiled object code, static
libraries, or dynamic shared objects (DSOs or DLLs). The specifics of the objects
generated and the method of linking is not as important as ensuring dependencies
are properly built and managed by the current build infrastructure (CMake). Here
we are very clear on what outcome we want but are ambivalent on how it is to be
achieved. This provides a great deal of flexibility to deal with the uncertainty in
configuring CMake to manage dependencies

4.2.5 Verify Shared Dependencies Perform as Expected

Two methods will be used to verify correct operation of shared dependencies.
First, we can test the applications as in previous refactoring phases to ensure the
results are acceptably close to the original reference results. This implicitly tests
dependencies through integral testing. Further, we can produce standalone test
applications which verify the results of individual library routines in isolation by
the method of unit testing. Both integral and unit testing will be used to verify
that both the parts and the whole are performing as desired.

Testing is part of a larger verification and validation (V & V) effort. Verifica-
tion ensures the code’s functional requirements satisfy its design goals. Validation
ensures the code meeds its functional requirements. Or more colloquially, valida-
tion asks ”is this the right code?”, verification asks “is the code is right?”.

In an ideal greenfield project, software requirements would be solicited and di-
vided into ‘functional’ and ‘non-functional’ categories. Both sets of requirements
would be translated into specifications to define what to software to build, and the
functional requirements/specifications would define the testing necessary to show
the program correctly and completely implements its specifications. This is a sim-
plified idealization of the development process. In this case, there are no formal
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requirements or specifications, so those must be inferred from the existing soft-
ware. Without a functional specification, we cannot construct a test plan which
verifies the code. The best we can do at this stage is to perform regression test-
ing to verify the code’s behavior is consistent with the original behavior. We do
not expect results to be numerically identical to previous versions but the results
should be reasonably close and deviations should be explicable.

We can begin to reconstruct a functional specification by defining require-
ments and specifications for the common elements isolated into new program
units and modules. Those allow us to create a formal test plan which will de-
fine the unit and integral testing to verify each new module. We may wish to start
reconstructing the software’s design basis (underlying goals, requirements, and
specifications) during this refactoring phase and complete it a later refactoring
effort.

4.3 Reconnaissance
Review of introductory material in chapters 1 - 3 of (Jeppson, 1974) and (Jeppson,
1976) provided a number of pipe flow friction factor correlations which we see
are used throughout the flow analysis applications. Both the Darcy-Weisbach and
Hazen-Williams friction factor correlations are used in the pipe flow calculation
applications and scheduled for extracted into the jfriction module. Note that the
Darcy-Weisbach friction factor is determined by different correlations depending
on the flow regime which may be determined by Reynolds number or a separate
figure of merit used to distinguish transition turbulent flow from wholly-rough-
pipe flow. Calculations for both the Reynolds number and this figure of merit were
also added to the jfriction module. Defining the logic to determine the flow
regime allowed the Darcy-Weisbach friction factor to be calculated at a higher
level of abstraction which greatly shortened and clarified JEPPSON_CH2, reducing
it to a simple 5 step sequence; see Table 5.

Most applications are concerned with pipe flow and the flow area is simply the
circular area of the inner diameter of the pipe. The area function was extracted as
a utility function to jutil and π was extracted to the jconstants module.

4.4 Products and Deliverables
4.4.1 Modules

New modules were added to the code to isolate common elements. These include:
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Table 5: JEPPSON_CH2.f90 after refactoring common elements into modules

1 !> Darcy-Weisback friction factor solver
2 program JEPPSON_CH2
3 use, intrinsic :: iso_fortran_env, only: STDIN => input_unit, &
4 STDOUT => output_unit
5 use jfriction, only: f_darcy_weisbach
6 use jutil, only: circ_area
7
8 implicit none
9

10 ! Flow regime selection metric above which flow is turbulent-rough
11 real, parameter :: PARLIM = 100.0
12 ! Maximum number of iterations in friction factor root finder
13 integer, parameter :: MAXITER = 15
14 ! Minimum difference to continue iterating in flow solver
15 ! (numerical tolerance)
16 real, parameter :: MAXDIF = 1.0E-5
17
18 ! Pipe diameter, ft
19 real :: D
20 ! Absolute roughness of pipe, ft
21 real :: E
22 ! Darcy-Weisback friction factor
23 real :: F
24 ! Length of pipe, ft
25 real :: FL
26 ! Acceleration of gravity, ft/s**2
27 real :: G
28 ! Head loss, ft
29 real :: HL
30 ! Volumetric flow rate, cfs
31 real :: Q
32 ! Bulk velocity, ft/s
33 real :: V
34 ! Kinematic viscosity of fluid (nu)
35 real :: VIS
36
37 ! Read format
38 100 format(6F10.5)
39 ! Write format
40 101 format ('Q = ', F10.4, ' cfs, D = ', F10.4, ' ft, L = ', F10.2, &
41 ' ft, F = ', F10.5, ', Head loss = ', F10.4, ' ft')
42
43 continue
44
45 do
46 ! 1) Read flow conditions and pipe geometry
47 ! D - Pipe diameter, ft
48 ! Q - Flow rate, cfs
49 ! FL - Length of pipe, ft
50 ! VIS - Kinematic viscosity of fluid (nu)
51 ! E - Absolute roughness of pipe, ft
52 ! G - Acceleration of gravity, ft/s**2
53 read(STDIN, 100, end=99) D, Q, FL, VIS, E, G
54
55 ! 2) Calculate friction factor
56 F = f_darcy_weisbach(Q, D, E, VIS, PARLIM, MAXITER, MAXDIF)
57
58 ! 3) Calculate bulk flow velocity
59 V = Q / circ_area(D)
60
61 ! 4) Calculate head loss
62 HL = F * FL * V * V / (2.0 * G * D)
63
64 ! 5) Display results
65 ! Q - Flow rate, cfs
66 ! D - Pipe diameter, ft
67 ! FL - Length of pipe, ft
68 ! F - Darcy-Weisbach friction factor
69 ! HL - Head loss along pipe, ft
70 write(STDOUT, 101) Q, D, FL, F, HL
71 end do
72
73 99 continue
74
75 stop
76 end program JEPPSON_CH2
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• jfriction - pipe flow friction factor correlations and related functions,

• jconstants - physical and numerical constants and unit conversion factors,

• alfc_sperry_mathpack - legacy Fortran compatibility libraries for propri-
etary UNIVAC MATH-PACK routines,

• jutil - common routines which aren’t otherwise categorized (contains a
single routine to calculate the area of a circle to determine flow area in a
filled circular pipe), and

• m_ftncheck - Unit testing framework based on ftncheck from Arjen Markus’
FLIBS Fortran utility routine library10.

4.4.2 Programs

All programs from the previous modification phase were retained and the program
test_jfriction was added as an illustration of a test driver application which
runs unit tests on the jfriction module routines; see section 4.4.4. Prototype
functions for the jfriction library were developed in the Jupyter Notebook un-
der JEPPSON_CH2/ipynb/Frictional Losses.ipynb; see section 4.4.4.

4.4.3 Build Infrastructure

The CMake build infrastructure was heavily modified to track the dependencies of
each application, compile each dependency once and independently, and ensure
each application links with the appropriate dependencies. This breaks compatibil-
ity with the existing Makefiles and additional build documentation is provided to
help users manually build the software if CMake isn’t available. The static Make-
file build infrastructure should be updated to handle dependencies or deprecated
in favor of CMake.

The biggest change to the CMake configuration was the definition of a com-
mon location for storing object (*.o) and module files (*.mod) of dependencies
and allowing for builds of the entire jeppson_pipeflow project as well as builds of
individual projects within it.

10https://flibs.sourceforge.net/
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4.4.4 Test Infrastructure

Example unit tests and a driver utility are provided for the jfriction module
to illustrate on method of unit testing in a modern Fortran application. There are
other methods which can be used but the one selected illustrates the essential func-
tionality needed. As a practical convenience, the Test Anything Protocol (TAP;
see https://testanything.org/) is implemented in a limited fashion, showing
how unit testing results can be presented in a manner which allows continuous in-
tegration and the automated analysis of test results. Showing that programs pass
verification tests at any point in the code’s development simplifies release and de-
velopment and catches errors early in the development cycle. This moves the role
of testing closer to the developer, simplifying the role of the test engineer and
freeing test engineers to focus on the more cognitively demanding act of software
validation. This shortens the release cycle and improves overall system quality.

The Test Anything protocol was originally developed for testing Perl mod-
oules and was found to be a straightforward way to communicate the results of
automated testing. Table 6 shows the results of two tests: the number of individ-
ual tests run, the pass/fail (ok/not ok) state of each test along with it’s serial ID,
and some diagnostic comments.

At it’s core, a TAP stream consists of a plan, a line showing the number of
tests which are intended to be run, and one line per test showing the results of that
test, beginning with ok if the test passed or not ok if the test failed. Comments
(prefaced with #) can be placed almost anywhere. TAP is very flexible and has
more capabilities but the essential notion is that it communicates the count and
status of tests in a simple human- and machine readable form.

As noted previously, the ftncheck unit testing framework from the FLIBS
library was modified and used as the core of the standalone test application for
the jfriction module. Tests of individual routines in the jfriction module are
defined in the jtest module; as an example, the unit test of the laminar friction
factor correlation is shown in Table 7. This routine generates the output seen in
lines 4 through 29 of Table 6.

Functions to add TAP plans and test results are have been added to the ftncheck
framework along with type- and rank-dependent functions for integer and real
comparisons which implement the generic function interfaces assert_equal and
assert_comparable. Note that the fortran-testanything library (see https:
//github.com/dennisdjensen/fortran-testanything) already provides this
functionality however it has difficulty compiling under the Intel Fortran compiler
ifort so it was decided to add minimal TAP support to ftncheck rather than

https://testanything.org/
https://github.com/dennisdjensen/fortran-testanything
https://github.com/dennisdjensen/fortran-testanything
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Table 6: Unit test results in TAP format

1 #
2 # Running all unit tests.
3 #
4 # 1. # Testing f_laminar()
5 # Test: jfriction:f_laminar()
6 1..22
7 ok - Test 1: Laminar friction factor for Re = 1.0000E+00 = 6.4000E+01
8 ok - Test 2: Laminar friction factor for Re = 1.4659E+00 = 4.3659E+01
9 ok - Test 3: Laminar friction factor for Re = 2.1489E+00 = 2.9782E+01

10 ok - Test 4: Laminar friction factor for Re = 3.1502E+00 = 2.0316E+01
11 ok - Test 5: Laminar friction factor for Re = 4.6179E+00 = 1.3859E+01
12 ok - Test 6: Laminar friction factor for Re = 6.7695E+00 = 9.4542E+00
13 ok - Test 7: Laminar friction factor for Re = 9.9235E+00 = 6.4493E+00
14 ok - Test 8: Laminar friction factor for Re = 1.4547E+01 = 4.3995E+00
15 ok - Test 9: Laminar friction factor for Re = 2.1325E+01 = 3.0012E+00
16 ok - Test 10: Laminar friction factor for Re = 3.1261E+01 = 2.0473E+00
17 ok - Test 11: Laminar friction factor for Re = 4.5826E+01 = 1.3966E+00
18 ok - Test 12: Laminar friction factor for Re = 6.7177E+01 = 9.5271E-01
19 ok - Test 13: Laminar friction factor for Re = 9.8476E+01 = 6.4990E-01
20 ok - Test 14: Laminar friction factor for Re = 1.4436E+02 = 4.4334E-01
21 ok - Test 15: Laminar friction factor for Re = 2.1162E+02 = 3.0243E-01
22 ok - Test 16: Laminar friction factor for Re = 3.1022E+02 = 2.0631E-01
23 ok - Test 17: Laminar friction factor for Re = 4.5475E+02 = 1.4074E-01
24 ok - Test 18: Laminar friction factor for Re = 6.6663E+02 = 9.6005E-02
25 ok - Test 19: Laminar friction factor for Re = 9.7723E+02 = 6.5491E-02
26 ok - Test 20: Laminar friction factor for Re = 1.4325E+03 = 4.4676E-02
27 ok - Test 21: Laminar friction factor for Re = 2.1000E+03 = 3.0476E-02
28 ok - Test 22: Array calculation of laminar friction factors
29 # Test plan conpleted with 22 tests.
30 # 2. # Testing f_blasius()
31 # Test: jfriction:f_blasius()
32 1..22
33 ok - Test 1: Blasius friction factor for Re = 2.1000E+03 = 4.6680E-02
34 ok - Test 2: Blasius friction factor for Re = 2.5475E+03 = 4.4480E-02
35 ok - Test 3: Blasius friction factor for Re = 3.0903E+03 = 4.2383E-02
36 ok - Test 4: Blasius friction factor for Re = 3.7487E+03 = 4.0385E-02
37 ok - Test 5: Blasius friction factor for Re = 4.5475E+03 = 3.8481E-02
38 ok - Test 6: Blasius friction factor for Re = 5.5165E+03 = 3.6667E-02
39 ok - Test 7: Blasius friction factor for Re = 6.6920E+03 = 3.4938E-02
40 ok - Test 8: Blasius friction factor for Re = 8.1179E+03 = 3.3291E-02
41 ok - Test 9: Blasius friction factor for Re = 9.8476E+03 = 3.1722E-02
42 ok - Test 10: Blasius friction factor for Re = 1.1946E+04 = 3.0226E-02
43 ok - Test 11: Blasius friction factor for Re = 1.4491E+04 = 2.8801E-02
44 ok - Test 12: Blasius friction factor for Re = 1.7579E+04 = 2.7443E-02
45 ok - Test 13: Blasius friction factor for Re = 2.1325E+04 = 2.6150E-02
46 ok - Test 14: Blasius friction factor for Re = 2.5869E+04 = 2.4917E-02
47 ok - Test 15: Blasius friction factor for Re = 3.1381E+04 = 2.3742E-02
48 ok - Test 16: Blasius friction factor for Re = 3.8068E+04 = 2.2623E-02
49 ok - Test 17: Blasius friction factor for Re = 4.6179E+04 = 2.1556E-02
50 ok - Test 18: Blasius friction factor for Re = 5.6019E+04 = 2.0540E-02
51 ok - Test 19: Blasius friction factor for Re = 6.7955E+04 = 1.9572E-02
52 ok - Test 20: Blasius friction factor for Re = 8.2435E+04 = 1.8649E-02
53 ok - Test 21: Blasius friction factor for Re = 1.0000E+05 = 1.7770E-02
54 ok - Test 22: Array calculation of Blasius friction factors
55 # Test plan conpleted with 22 tests.
56 #
57 # Completed all unit tests.
58 #
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modifying fortran-testanything to build under ifort.
The unit testing frameworks available for Fortran are not nearly as robust or

mature as those available for comparable languages. Local modification is often
necessary to support one’s specific toolchain (platform, compiler, build frame-
work, etc.).

Note that test_f_laminar calls f_laminar with both scalar and array argu-
ments. This verifies that f_laminar behaves correctly as an elemental function
and shows the power of implementing assert_comparable as a generic interface
and type- and rank-specific implementation functions. The underlying complexity
of the function’s implementation is not apparent from the caller’s perspective.

Part of developing the test cases was generation of test data. Note that lines 6-
13 of Table 7 give logarithmically-spaced values for Reynolds number re over
the interval [1.0 .. 2100.0] and corresponding reference values in lines 15-22
for f_expected. These data were generated using a Jupyter Notebook using
Python 2 and the NumPy numerical analysis library. Many of the correlations
in the jfriction library were first prototyped in Python using the Jupyter Note-
book environment and the resulting code was translated to Fortran. Test data was
rapidly and independently11 generated in Python and used to verify the Fortran.

5 Insights
Initial recovery of the code took approximately 1 week. The initial challenge
was in removing errors introduced by the optical character recognition process
and secondarily, correcting errors in the original typeset code listings. The first
program in Chapter 6 presented a substantial challenge due to the presence of
variables II and I1 which made proofreading difficult. Manually checking the test
cases for correctness was also an unexpected difficulty but confirmed the proper
functioning of the software.

Once the CMake build system was configured properly, the software build
process became trivial. Despite having copious documentation, understanding
how CMake operates and how to properly configure it was difficult, often leading
to blind trial and error to resolve issues. The underlying logic or model of CMake
is not apparent. It was selected as the most popular of the cross-platform build
systems; see also waf, scons. The modular nature of the source tree complicates
the build process under CMake; while the current build configuration works, it

11Independence is limited since a single author developed the both the prototype and production
code.
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Table 7: Unit test of f_laminar function

1 !> Laminar friction factor test, Re in [1.0 .. 2100.0]
2 subroutine test_f_laminar()
3 use jfriction, only: f_laminar
4 real, parameter :: EPS = 1.0E-3
5 integer, parameter :: NTESTPTS = 21
6 real, dimension(NTESTPTS), parameter :: re = [ &
7 1.00000000e+00, 1.46592234e+00, 2.14892832e+00, &
8 3.15016204e+00, 4.61789293e+00, 6.76947243e+00, &
9 9.92352089e+00, 1.45471110e+01, 2.13249351e+01, &

10 3.12606988e+01, 4.58257569e+01, 6.71770011e+01, &
11 9.84762669e+01, 1.44358560e+02, 2.11618439e+02, &
12 3.10216198e+02, 4.54752857e+02, 6.66632374e+02, &
13 9.77231292e+02, 1.43254519e+03, 2.10000000e+03 ]
14
15 real, dimension(NTESTPTS), parameter :: f_expected = [ &
16 6.40000000e+01, 4.36585200e+01, 2.97822870e+01, &
17 2.03164152e+01, 1.38591347e+01, 9.45420794e+00, &
18 6.44932385e+00, 4.39949897e+00, 3.00118147e+00, &
19 2.04729908e+00, 1.39659450e+00, 9.52707012e-01, &
20 6.49902784e-01, 4.43340526e-01, 3.02431113e-01, &
21 2.06307731e-01, 1.40735784e-01, 9.60049384e-02, &
22 6.54911488e-02, 4.46757286e-02, 3.04761905e-02 ]
23
24 real, dimension(NTESTPTS) :: f_calculated
25 integer :: i
26 integer :: nplan
27 integer :: icurrtest
28 character (len=80) :: tlabel
29
30 10 format('Test ', I0, ': Laminar friction factor for Re = ', ES12.4, &
31 ' = ', ES12.4)
32 20 format('Test ', I0, ': Array calculation of laminar friction ', &
33 'factors')
34 continue
35
36 nplan = NTESTPTS + 1
37
38 call tap_start_plan(nplan)
39
40 icurrtest = 0
41
42 ! Single call
43 f_calculated = -1.0
44 do i = 1, NTESTPTS
45 ! TODO: Refactor to generic test routine (next test ID)
46 icurrtest = icurrtest + 1
47 f_calculated(i) = f_laminar(re(i))
48 write(tlabel, 10) icurrtest, re(i), f_expected(i)
49 call assert_comparable(f_calculated(i), f_expected(i), EPS, &
50 tlabel)
51 end do
52
53 ! Array call - tests if 'elemental' works
54 f_calculated = -1.0
55 f_calculated = f_laminar(re)
56 ! TODO: Refactor to generic test routine (next test ID)
57 icurrtest = icurrtest + 1
58 write(tlabel, 20) icurrtest
59 call assert_comparable(f_calculated, f_expected, EPS, tlabel)
60
61 call tap_finish_plan(icurrtest, nplan)
62
63 return
64 end subroutine test_f_laminar
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is not necessarily optimal and the difficulty in understanding CMake limits any
effort to improve the build process for fear of inadvertently breaking the build
configuration. The choice of build system should be reevaluated in the future to
see if an alternate cross-platform build utility would be more maintainable.

Programs from chapters 2, 4, and 7 were rather straightforward to recover.
The programs from chapters 5 and 6 required writing an argument-compatible
replacement for the Sperry MATH-PACK routine GJR. This required experimenta-
tion with the BLAS and LAPACK libraries, specifically in data arrangement and
the use of modern Fortran’s reshape intrinsic function.

Removal of GOTOs and other archaic control structures simplified code anal-
ysis, allowing further changes which greatly clarified the code. By constraining
the scope of a refactoring evolution into a well-defined ’phase’, code changes are
easier to test and validate. As noted in section 3.2, structure may appear after
refactoring which was not apparent in the original code. By segmenting a refac-
toring effort into a number of small evolutions rather than a single large project,
emergent work can be deferred to a later evolution without affecting the current
schedule and effort commitments. This also gives developers the time necessary
to analyze the code and devise a refactoring plan, rather than adding unplanned
work to the current schedule.

A vital part of any refactoring effort is building a test suite and improving
its effectiveness. This project shows the value of both integral and unit testing.
Strongly coupled code is difficult to unit test; the test cases are larger and the
source of an error is not always apparent. The effect of unit testing is improved
if code can be refactored into loosely-coupled routines with results which only
depend on arguments passed in. This does not reduce the need for integral testing
but it allows routines to be tested in isolation which is especially important when
building reusable libraries.

There are still substantial deficiencies in the scope and depth of testing for
this software suite. However, each program has at least one test case with ref-
erence data and several functions within the jfriction module have unit tests,
providing a solid basis for extending both unit and integral tests. A further code
revitalization evolution could be devoted to improving the test suite and testing ar-
chitecture. For example, the CMake build system has an automatic testing feature
called CTest. This could be leveraged to allow automated testing of new builds
to allow continuous integration, incorporating testing into development practice,
rather than segregating testing from development. Regardless of the development
methodology used – waterfall, agile, etc. – reducing the cost of testing increases
the frequency of testing and reduces the time needed to detect and correct errors.
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Few specialty or custom software tools were needed in refactoring the Jeppson
software suite. A text editor, revision control system, modern Fortran compiler,
make, CMake, and the Doxygen documentation generator were the primary tools
used to revitalize the software. The findent source code reformatter was devel-
oped recently and has proven very capable as refactoring tool since it can operate
on both fixed and free-format Fortran code. Custom software was developed to
parse gfortran error output to create Fortran variable declarations using the unix
utilities grep, sed, and sort. This could have easily been done with Python, Perl,
or any language with regular expression and sorting libraries. Jupyter Notebook
and Pythonwas used to verify the

The Eclipse development environment and the Photran plugin would have
helped with a number of refactoring tasks but like many IDEs, Photran has a
bias toward creating a single executable per project which did not match the mul-
tiple executable architecture of the Jeppson software suite. Further, integration
between CMake and Eclipse is not straightforward so the decision was made to
not use Eclipse. This is unfortunate since Eclipse is cross-platform and has good
support for the Mercurial revision control system, the Doxygen code documenta-
tion system, and for Fortran via the Photran plugin.

Had this project involved a single executable, it would have been ideal for
maintaining in Eclipse. Fortunately it was small enough to maintain manually via
CMake. Automatic refactoring is almost always preferable to manual refactoring
due to its speed and consistency, especially for tedious evolutions such as imple-
menting IMPLICIT NONE (i.e. requiring explicit variable declaration). Since the
software suite is composed of six monolithic programs with references to a single
library routine, it was felt that the overhead of building multiple linked projects
in Eclipse would have required too much ongoing effort to be spent on overhead
compared to the one-time effort expenditure spent configuring CMake. This is sort
of a hindsight tradeoff; without an understanding of the benefits and limitations of
Eclipse and CMake, a different decision may have been appropriate.

This points out a theme of software revitalization - a major problem is not
knowing what we don’t know!. A phased approach of refactoring with clearly
defined goals, outcomes, and deliverables and a willingness to constrain or defer
goals to complete a refactoring iteration defends the project against scope creep
and maintains project inertia. This prevents emergent issues from dominating the
development plan and allows planned work to be completed. Measurable progress
is made while allowing for adjustments to the project plan and goals as new infor-
mation becomes available. Automated build and testing allow iterations to be
completed in a timely manner, reducing the tendency toward fewer and larger re-
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leases as issues emerge. This admits the reality that software project estimation
is not an exact and predictable science and reduces schedule risk by setting clear
and reasonable expectations at each phase of the project. By detecting emergent
issues earlier in the project, disruption is limited to individual phases of the project
rather than buried in the entire project. The overall project should become more
manageable and development should become more predictable as a result.
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Software, Documentation, and Online Resources
• jeppson_pipeflow project archive - https://bitbucket.org/apthorpe/
jeppson_pipeflow

• Link to (Jeppson, 1974); source document for project and code. See also
(Jeppson, 1976) - https://digitalcommons.usu.edu/water_rep/300/

• Acorvid Legacy Fortran Compatibility Library - archive: https://bitbucket.
org/apthorpe/alfc ; introduction: http://www.acorvid.com/2018/01/
20/introducing-the-acorvid-legacy-fortran-compatibility-library/

• LAPACK linear algebra package - http://www.netlib.org/lapack/

• Markdown documentation - https://daringfireball.net/projects/markdown/
syntax

• CMake build automation system - https://cmake.org/

• waf build automation system - https://waf.io/

• scons build automation system - http://scons.org/

• Doxygen source code documentation system - http://www.stack.nl/~dimitri/
doxygen/

• PlusFORT Fortran development and refactoring toolkit - http://www.adeptscience.
co.uk/products/fortran-tools/plusfort-with-spag/plusfort-version-6.
html

• findent Fortran source code reformatter - https://sourceforge.net/
projects/findent/

• Jupyter Notebook interactive computing environment - http://jupyter.
org/

• FLIBS Fortran utilities - https://flibs.sourceforge.net/

• Numdiff numerically-aware file difference checker - http://www.nongnu.
org/numdiff/

• Test Anything Protocol (TAP) - https://testanything.org/

https://bitbucket.org/apthorpe/jeppson_pipeflow
https://bitbucket.org/apthorpe/jeppson_pipeflow
https://digitalcommons.usu.edu/water_rep/300/
https://bitbucket.org/apthorpe/alfc
https://bitbucket.org/apthorpe/alfc
http://www.acorvid.com/2018/01/20/introducing-the-acorvid-legacy-fortran-compatibility-library/
http://www.acorvid.com/2018/01/20/introducing-the-acorvid-legacy-fortran-compatibility-library/
http://www.netlib.org/lapack/
https://daringfireball.net/projects/markdown/syntax
https://daringfireball.net/projects/markdown/syntax
https://cmake.org/
https://waf.io/
http://scons.org/
http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/
http://www.adeptscience.co.uk/products/fortran-tools/plusfort-with-spag/plusfort-version-6.html
http://www.adeptscience.co.uk/products/fortran-tools/plusfort-with-spag/plusfort-version-6.html
http://www.adeptscience.co.uk/products/fortran-tools/plusfort-with-spag/plusfort-version-6.html
https://sourceforge.net/projects/findent/
https://sourceforge.net/projects/findent/
http://jupyter.org/
http://jupyter.org/
https://flibs.sourceforge.net/
http://www.nongnu.org/numdiff/
http://www.nongnu.org/numdiff/
https://testanything.org/
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• TAP provider for Fortran - https://github.com/dennisdjensen/fortran-testanything

• Photran plug-in for Eclipse IDE - https://www.eclipse.org/photran/

• Link to (Albert and Whitehead, 1986) - http://www.dtic.mil/dtic/tr/
fulltext/u2/a170611.pdf

• Link to (Ding and Kennedy, 1982) - http://www.dtic.mil/dtic/tr/fulltext/
u2/a110089.pdf

https://github.com/dennisdjensen/fortran-testanything
https://www.eclipse.org/photran/
http://www.dtic.mil/dtic/tr/fulltext/u2/a170611.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a170611.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a110089.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a110089.pdf
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